
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 167
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Securing and Authenticating Access to
Encrypted Cloud Data

Kunal Kashelani, Varshapriya Jyotinagar

Abstract— Sensitive information, when placed in wrong hands may lead to unwanted results. One way of protecting your data is to never use a

cloud based service, but it carries dis-advantages of its own. So, how could it be possible to actually trust the cloud service provider with your sensitive
information, without actually giving away the key to access your information?

Sensitive or not, a bulk amount of data gets stored on the cloud and it is also well protected by effective encryption mechanisms. But, the problem
does not lie in mere storage, but in accessing and continuously updating of the data. The encrypted data, when gets accessed by the authentic user gets
decrypted first and becomes vulnerable to attacks. Such data possesses a chance of being compromised and get placed in the wrong hands. However,
if an effective system can be developed, where a user can access, update and perform operations on the data, without actually ever having to decrypt it,
it could go a long way sealing the gate of vulnerabilities to such data and protecting key information of the user.

Keywords- cloud, security, confidentiality, database, database as a service.

--------------------—————————— ——————————--------------------

I. INTRODUCTION
When considering security over cloud, third parties

involved such as: cloud provider, intermediaries and internet
cannot be considered as trusted. Only authentic users shall be
trusted with the sensitive data and no other parties involved.
Also the applications available online are vulnerable to theft.
Sensitive information can be accessed by the adversaries by
exploiting on the software bugs, also there is always the
possibility of curious or malicious administrator leaking the
private data. So, it can be considered that the privacy of
information is a significant problem.
 Enough security has been provided when
considering the confidentiality of data for storage as a service
paradigm, however while ensuring the security of data for
database as a service, the paradigm is not considered secured
enough.

We plan to design an architecture with a goal to allow
multiple, independent clients, not necessarily belonging to
the same geographic location, to execute concurrent
operations on encrypted data. It should also include SQL
statements that modify database structure, which would help
in preserving the confidentiality and consistency of data at
the client and the cloud level and also would eliminate
intermediate servers, if any are present between the client and

the cloud provider.

 When we try to secure database as a service, our
architecture does not introduce any intermediary proxy or a
broker server between the cloud provider and the client. This
elimination enables the secure database as a service to achieve
same availability, elasticity level and reliability of a cloud
DBaaS. Any proxy or intermediate server represents a single
point of failure and hence were considered impracticable for a
cloud based solution.

II. LITERATURE SURVEY
A number of successful attempts have been made in

securing the sensitive data of the users. The attempts however
may have been significantly different from each other in
terms of features provided, they all lack one thing in
common, which is providing database as a service. Since the
subject was considered too tough to ask for, it was left open
for research in pretty much every attempt was made at
securing the sensitive information.

Our secure database as a service aims at providing
such facility, keeping intact the features of original work,
which may be given as:

• It maintains confidentiality of the data by allowing
cloud database server to execute concurrent SQL
operations over encrypted data.

• The data doesn’t compromise on either elasticity,
scalability or even availability of it, since it does not
require an intermediate server.

• Time constraints required to perform the operation
does not increase dramatically.

————————————————
• Kunal Kashelani is currently pursuing master’s degree (M-Tech) program

in Computer Engineering in Veermata Jijabai Technological
Institute(VJTI), PH- +919028402049, E-mail: kunal.kashelani@gmail.com.

• Varshapriya Jyotinagar currently works as an Associate Professor in
department of Computer Engineering, VJTI, Mumbai, India, E-mail:
varshapriyajn@vjti.org.in.

IJSER

http://www.ijser.org/
mailto:kunal.kashelani@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 168
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• Geographically distributed clients can concurrently
access the database service independently.

• Tenant metadata stored by the cloud database are
always encrypted, which allows it to work without
the use of trusted proxy.

For a long time, a big problem in using encryption hasn’t
been if an attacker can crack or not a strongly encrypted file.
The problem that persist is that to actually do anything with
encrypted data—search it, sort it, or perform computation
with it–that data must be decrypted and exposed to prying
eyes. [7]

A. Crypt-DB:

A fully homomorphic system is the one, in which a user
can encrypt data into indecipherable strings of numbers. We
can then apply math on those strings to decrypt the result to
get the same answer that we would have got had the data not
been encrypted at all. Cryptographers have long sought to
implement a system like that. Gentry solved that problem of
fully homomorphic encryption with a brilliant new system.
But his solution was theoretical and had a practical problem:
It multiplied the time to perform the calculation by around a
trillion. [7]

Crypt-DB tried to create a system that can manage to
emulate a fully homomorphic system for as many functions
of SQL as possible, where adding a mere 15% to 26% of
added computing time to those applications. [2] [5] The only
problem that lies with using crypt-DB is that they trust an
intermediate proxy for their connection to the database
server. Trusting an intermediate proxy is leaving open a
single point of failure, which can turn into a system bottle-
neck.

They divided their model into two kind of threats: [2] [5]
1. When the DBMS server is compromised, the attacker

is supposedly passive and wants to learn about
confidential data stored in the database. The threat
included root access to DBMS machines, software
compromises and even access to RAM of physical
machines. CryptDB executes SQL queries over
encrypted data to overcome this threat. Secret keys
are used by proxy to encrypt all the data inserted or
included in queries.

2. The second threat that they considered and meant to
solve is arbitrary threat, where the adversary gets
access to the keys that are used to encrypt the entire
database. In this case, it is supposed that the
adversary has gained complete control over the both,
software and hardware of the application, DBMS
servers and the proxy. CryptDB ensures in this case
that the adversary does not gain access to the data of
the users which are not currently logged in.

B. Securing DBaaS:

 Securing database as a service gives a very good
example, where Divyakant Agrawal and his colleagues tried
to ensure privacy of data by splitting it between multiple
hosts. The idea was such that the hosts won’t be able to
communicate with one another. The user on the other hand
can only communicate with all the hosts, access the data from
the respective service providers, combine it and get the
original data. It would in such a case be impossible to access
the original data from either piece for any malicious user.
This method, however remain open to one concern. Metadata
(such as field names) are not secured by their software and
are open to attacks. This leaves a huge vulnerability in the
security system, since Metadata possesses all the necessary
information about the data present inside the servers. [4]

The internet over the past decade or so has replaced
computer and external hard drives to become the natural
place of storing a bulk amount of data, not just for big
corporations but also the regular user. With the rise of the
stored data over the internet to such a high extent, also
considering the fact that the data is mostly private and
sensitive, security of the data becomes a natural concern for
the users. With the cloud providers providing storage of data
in encrypted format may have encouraged us up a bit, but the
concern doesn’t fade away as the data we store still remains
vulnerable to a lot of attacks.

One big concern that most corporations are worried about
if the fact that although the data is protected while storage
but is susceptible when tried to apply operations to it. Solving
such an issue could go a long way maintaining confidentiality
of the data considering the importance of protecting sensitive
information of the user. Also add to the fact that big
corporations such as ‘Google’ and ‘MIT’ have already buckled
up trying to solve this issue at their own extent makes one
understand the importance of such a project. They are calling
their project ‘Crypt-DB’.

The algorithm that we are planning to develop would be

based on AES encryption mechanism and as a result of this,
the cloud data on which we are planning to work this
algorithm with would be expected to be encrypted with the
same encryption mechanism.

C. Commonly used Encryption mechanisms:

Here is a list of some of the well-known corporations and
what kind of encryption mechanism they use to store data
over the cloud: [8]

• Amazon S3 uses a mechanism called as server-side
encryption. They use one of the strongest block
ciphers available i.e. 256-bit Advanced Encryption
Standard (AES-256), to encrypt your data.

• Google encrypts and stores every cloud storage
object’s data and metadata under the 128-bit
Advanced Encryption Standard, and each encryption

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 169
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

key is itself encrypted with a regularly rotated set of
master keys.

• IDrive transfers and stores user’s data using 256-bit
AES encryption mechanism.

• Wuala uses 2048-bit RSA, 256-bit AES and SHA-256
algorithms for encryption and signatures and to keep
integrity checks for your data.

• SpiderOak has a layered approach. It encrypts your
data, using a combination of 256-bit AES and 2048-bit
RSA.

• CloudSafe transfers your plaintext data using the
highest possible SSL standard: EV SSL with AES-256-
bit encryption.

• TeamDrive also uses 256-bit AES encryption
algorithm to secure your data mainly while
transferring or storing it.

These along with various other corporations

generally use 128 bit or 256 bit key AES algorithm to
encrypt their data and store it in the cloud. Safesync and
SwissDisk also use 256 bit AES encryption while Crypto-
Heaven uses end to end encryption up to 4096-bit RSA
and AES-256 bit algorithm. [8]

It can be seen that most of the highly recognized
cloud storage platforms use 128-bit key AES or 256-bit
key AES, it can be very well said that our mechanism will
be able to secure a very high percentage of cloud
database present out there.

III. DESIGN AND ARCHITECTURE
A. Technology:

Java Database Connectivity (JDBC), an API for java
defines how a client may access a database. It is oriented
towards relational database and works on Java standard
edition platform. JDBC provides methods such as querying
and updating of data in a cloud database. It is primarily used
for making connection of a java program with the databases.
J2SE (Java platform standard edition) is a platform, which is
widely used for development and deployment of portable
applications, basically for desktop and server environment.
Being a part of Java software platform family which include
(J2ME, J2EE), it includes specifications for Java language and

Java virtual machine and also defines a wide range of general
purpose API’s. [9]

For the applications that are backed by SQL
databases, our technique will provide practical and provable
confidentiality, for attacks from curious or malicious
administrators or where an adversary snoops in and exploits
software bugs to gain access to private data. Our technique
will work by executing SQL queries over encrypted data
using a collection of SQL aware encryption schemes.

Once acquired a cloud database service, a tenant
installs the software, which allows them to connect to cloud
database as a service to administer it, read, write and modify
database tables. A simple assumption made while creating
this software is that the tenant is trusted, the network is
untrusted while the cloud provider is honest but curious.
 Our architecture does not introduce any intermediary
proxy or a broker server between the cloud provider and the
client.[1] This elimination enables the secure database as a
service to achieve the same availability, elasticity level and
reliability of a cloud DBaaS. Any proxy or intermediate server
represents a single point of failure and hence were considered
impracticable for a cloud based solution.

B. Approach and Mechanism:
Transparent data encryption (TDE): It is used to perform

real-time encryption/decryption of data. During recovery, a
database encryption key (DEK) is used, which is kept stored
in database boot record. A certificate is stored in the master
database which secures the symmetric key named as DEK.
The data and log files are protected by TDE. Software
developers uses TDE to encrypt data using AES and 3DES
algorithms.

The database will be uploaded on the cloud. When using
the DBaaS, the data will only be decrypted when the
authenticated user needs access to the data. Certain updating
operations will be performed on the database and on a copy
of it through two means: once through DBaaS and once
through regular way. When the updating is done through
DBaaS, user won’t be able to see any changes made in the
database until he tries to retrieve the data, on the other hand,
complete changes in the database may be seen, when the copy
of database is updated through usual means. Finally, both the
database and the copy of it are retrieved and compared.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 170
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Fig 1: Securing and authenticating encrypted cloud data

If they show the same changes done through the

process, the project can be called as a success. The
algorithm that we are planning to develop would be based
on AES encryption mechanism and as a result of this, the
cloud data on which we are planning to work this
algorithm with would be expected to be encrypted with the
same encryption mechanism.

How-ever, this topic can be considered as a very good
topic for the future scope of the project where either some
algorithms would work with other well-known encryption
mechanisms or possibly even a general purpose software
can be built which would discard the dependency of the
cloud data on the encryption mechanism and would work
with data encrypted in any format.

C. Managing Data and Metadata over the cloud:
 Taking a different approach here, our mechanism
instead of storing the data over the cloud and metadata over
the system of the client, it stores complete data and
metadata over the cloud.
 The information provided to encrypt and decrypt
the plaintext data and other administrative information is
called as metadata of the field. Adversaries gaining access
to the metadata can use the information to lay a hand on
the original plaintext data and hence it is very crucial from
security point of view to secure the metadata of the field as
well.
 Securing database as a service gives a very good
example, where Divyakant Agrawal and his colleagues

tried to ensure privacy of data by splitting it between
multiple hosts. Metadata (such as field names) are however
not secured by their software and are open to attacks. This
leaves a huge vulnerability in the security system, since
Metadata possesses all the necessary information about the
data present inside the servers. [4]
 We store the plaintext data through secure tables,
assuming they are saved in a relational database. While
encrypting the tables, we use a same generalized key to
store the table names, however a different randomly
generated key is used to store each column name to not
allow adversary to guess the columns with the same name,
since keeping the generalized encryption key for each
column would have kept same encrypted name for
columns with the same plaintext name, which could have
given attackers a certain idea about the relations among the
tables.[1] However, in some cases take for example while
using join query or the foreign key constraint, it is
necessary to encrypt different columns with the same
encryption key. This helps in allowing the remote
processing of queries over encrypted data.

D. SQL operations:
 When trying to run SQL queries over the
encrypted data, the information provided by metadata
terms really useful. Our architecture instead of leaving the
metadata produced vulnerable to attacks, encrypts it and
stores it too in the cloud database. One instance of metadata
is stored for each database in the cloud and is called as
database metadata while table metadata are the ones storing

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 171
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

information about encryption and decryption of plaintext
data and are associated with secure table. Metadata in
general contains the encryption keys used to encrypt the
secure tables inside the database and hence is really crucial
maintaining the confidentiality of the database. Different
combination of data types and encryption types have
different encryption keys associated with them.
 A common master key is used to encrypt both the
database metadata and table metadata. Authorized users
only are given information about this master key, so they
can use it to decrypt metadata also gain the information
which will be helpful in encrypting and decrypting the
tenant data.
 The primary key of the metadata storage table is
given to the user in the form of an ‘ID’ in order for the user
to be able to retrieve it. A function named Message
authentication code (MAC) is applied to the name of object,
which can either be an entire database or a table. If a user
knows the plaintext name of a table, it can use the ID to
retrieve the metadata of the table.

IV. CONCLUSION
 The proposed architecture, although being

developed for just one encryption algorithm, it does not
have any theoretical or practical limits attached to it. Our
solution can be extended to work on other platforms and
also can be included with new encryption algorithms. This
topic can be considered as a very good topic for the future
scope of the project where either some algorithms would
work with other well-known encryption mechanisms or
possibly even a general purpose software can be built
which would discard the dependency of the cloud data on
the encryption mechanism and would work with data
encrypted in any format.
 The impact of data encryption on the response time
would be negligible and hence a very little delay in the
performance is found out. This is because it is masked by
network latencies, which are typical of cloud scenarios.
Further optimizing the performance can also be considered
as a possible future scope of this project for interested
candidates.

 References:

1. Luca Ferretti, Michele Colajanni, and Mirco Marchetti:
‘Distributed, Concurrent, and Independent Access to Encrypted
Cloud Databases’, DOI no: 10.1109/TPDS.2013.154.

2. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan MIT CSAIL: ‘CryptDB:
Protecting Confidentiality with Encrypted Query Processing’,
ACM 978-1-4503-0977.

3. Dan Suciu: ‘SQL on Encrypted Database’, ACM 0001-
0782/12/09.

4. Joel Weis and Jim Alves-Foss: ‘Securing Database as a
service’, 1540-7993/11/$26.00 © 2011 IEEE.

5. Raluca Ada popa, Catherine M.S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan: ‘CryptDB: Processing
queries on an encrypted database’, 2012 ACM 0001-
0782/12/09.

6. Zebra1024. (2014, July 31). Transparent Data
Encryption(TDE). Retrieved from:
https://msdn.microsoft.com/en-us/library/bb934049.aspx.

7. Andy Greenberg. (2011, December 19). An MIT magic trick:
Computing on encrypted database, without ever decrypting
it. Retrieved from:
http://www.forbes.com/sites/andygreenberg/2011/12/19/an-
mit-magic-trick-computing-on-encrypted-databases-
without-ever-decrypting-them/.

8. Ashutosh KS. (n.d.). Top 10 online storage solutions with
encryption [Blog post]. Retrieved from:
http://www.hongkiat.com/blog/online-storage-with-
encryption/.

9. Java Connectivity - JDBC (n.d.). Retrieved from:
http://www.javadevelopmentindia.com/technology-amp-
integration/technology-amp-integration/java-
connectivity/jdbc/.

IJSER

http://www.ijser.org/
https://msdn.microsoft.com/en-us/library/bb934049.aspx
http://www.forbes.com/sites/andygreenberg/2011/12/19/an-mit-magic-trick-computing-on-encrypted-databases-without-ever-decrypting-them/
http://www.forbes.com/sites/andygreenberg/2011/12/19/an-mit-magic-trick-computing-on-encrypted-databases-without-ever-decrypting-them/
http://www.forbes.com/sites/andygreenberg/2011/12/19/an-mit-magic-trick-computing-on-encrypted-databases-without-ever-decrypting-them/
http://www.hongkiat.com/blog/online-storage-with-encryption/
http://www.hongkiat.com/blog/online-storage-with-encryption/

	I. Introduction
	II. Literature Survey
	III. Design and Architecture
	IV. Conclusion

